

BCF-003-001513

Seat No.

[Total Marks: 70

B. Sc. (Sem. V) (CBCS) Examination

August - 2021

Mathematics: BSMT - 501 (A)

(Mathematical Analysis - I and Group Theory)
(Old Course)

Faculty Code: 003

Subject Code: 001513

Time: $2\frac{1}{2}$ Hours]

Instructions:

- 1) All the questions are compulsory.
- 2) Numbers written to the right side indicates full marks of the question.

1. Answer all the Questions

[20]

- 1) Define Riemann Integration.
- 2) State Darboux's Theorem.
- 3) Define Refinement.
- 4) Define Oscillatory Sum.
- 5) State Second Mean Value Theorem for Integration of Bonnett's Form.
- 6) If $P = \{1, 7.5, 15.5, 20\}$ is partition of [1,20] then find $||P|| = \underline{\hspace{1cm}}$.
- 7) Define Interior Point.
- 8) State Hausdorff's Principle.
- 9) Define Discrete Metric Space.
- 10) Define Dense Set.
- 11) Give an example of neither open nor closed set in standard metric space.
- 12) Define Non-Singular element.
- 13) Define Abelian Group.
- 14) Define Idempotent element.
- 15) Define Coset.
- 16) Find the order of element 4 of $(\mathbb{Z}_6, +_6)$ and also find total number of generators of $(\mathbb{Z}_6, +_6)$.
- 17) Give an example of non-cyclic group which is an abelian.
- 18) Define Quotient group.
- 19) Define Isomorphism of Group.
- 20) Define order of $\mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 3 & 4 & 2 & 1 & 8 & 7 & 6 \end{pmatrix} \in S_8$

2(a). Answer any THREE [06] 1) Prove that $\int_a^b f(x)dx \le \int_a^{\overline{b}} f(x)dx$ 2) If function f defined as: f(x) = 0; $x \in \mathbb{Q}$ = 1; $x \notin \mathbb{Q}$ Then Show that f is not R-Integral over [a, b]. 3) If f is continuous in [a, b] then prove that $f \in R_{[a,b]}$. 4) Prove that finite intersection of finite open set of metric space is open Set. 5) Prove that $\mathbb{N}' = \emptyset$. 6) If (X, d) is Metric Space and $A, B \subset X$ then prove that $A \subset B \Rightarrow A' \subset B'$. (b). Answer any THREE [09] 1) State and Prove First Mean Value Theorem for *R*–Integration. 2) State and Prove Fundamental Theorem of Integration. 3) Evaluate: $\lim_{n \to \infty} n \sum_{r=0}^{n-1} \frac{1}{n^2 + r^2} = \frac{\pi}{4}$ 4) If $f, g \in R_{[a,b]}$ then prove that $f + g \in R_{[a,b]}$ 5) In usual notation prove that (\mathbb{R}, d) is metric space. 6) Prove that every convergent sequence is Cauchy Sequence. (c). Answer any TWO [10]1) State and Prove Necessary and Sufficient Condition for a bounded function f on [a, b] to be R-Integrable 2) For $0 < x < \frac{\pi}{2}$, Show that $f(x) = \cos(x)$ is *R*-Integrable and Find $\int_0^{\frac{\pi}{2}} \cos(x) dx$. 3) State and Prove General form of First Mean Value Theorem. 4) In usual notation prove that \overline{E} is closed set. 5) If (X, d) is metric space, then show that $\left(X, \frac{d}{1+d}\right)$ is also metric space. 3(a). Answer any THREE [06] 1) State and Prove Reversal law for a group. 2) Show that Inverse element is unique. 3) Prove that every element of a finite group is a finite order. 4) Prove that a group G is commutative if $(ab)^2 = a^2b^2$, $\forall a, b \in G$.

(b). Answer any THREE

[09]

1) Show that a non-empty subset H of Group G is subgroup of G iff $ab^{-1} \in H$.

5) Check whether given permutation even or odd and also find O(f) where $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 5 & 2 & 8 & 6 & 1 & 7 \end{pmatrix} \in S_8$

- 2) Let G be a group and $a, b \in G$ such that $a \neq e \& O(b) = 2$, If $bab^{-1} = a^2$ then find O(a).
- 3) Write all the element of S_3 also find order of each elements of S_3 .
- 4) Define Translation, Invariant and Transposition with example.

6) If G is a finite group then show that $a^{O(G)} = e$, $\forall a \in G$.

- 5) Let $H \leq G$ and $K \leq G$ then Prove that $K \cap H$ is normal subgroup of K if H is normal subgroup of G.
- 6) Prove that any two disjoint cycle in S_n is commutative.

(c). Answer any TWO

[10]

- 1) State and Prove Lagrange's Theorem.
- 2) State and Prove Cayley's Theorem.
- 3) A subgroup H of group G is normal subgroup iff (H_a)(H_b) = H_{ab}; ∀a, b ∈ G.
 4) Show that the mapping f: (ℝ, +) → (ℝ⁺,×) is defined by f(x) = e^x; ∀x ∈ ℝ is an isomorphism.
- 5) Define Alternating group A_n , Show that $A_n (n \ge 2)$ is subgroup of S_n of order $\frac{n!}{2}$.